A) Hyaluronic Acid References

  1. Funt D, Pavicic T. Dermal fillers in aesthetics: an overview of adverse events and treatment approaches. Clin Cosmet Investig Dermatol.2013;6:295-316.
  2. De Boulle K. Management of complications after implantation of fillers. J Cosmet Dermatol.2004;3(1):2-15.
  3. Shah S, Alam M. Laser resurfacing pearls. Semin Plast Surg.2012;26(3):131-6.
  4. Masson F. [Skin hydration and hyaluronic acid]. Ann Dermatol Venereol.2010;137 Suppl 1:S23-5.
  5. McKee CM, Penno MB, Cowman M, et al. Hyaluronan (HA) fragments induce chemokine gene expression in alveolar macrophages. The role of HA size and CD44. J Clin Invest.1996;98(10):2403-13.
  6. Beasley KL, Weiss MA, Weiss RA. Hyaluronic acid fillers: a comprehensive review. Facial Plast Surg.2009;25(2):86-94.
  7. Teriete P, Banerji S, Noble M, et al. Structure of the regulatory hyaluronan binding domain in the inflammatory leukocyte homing receptor CD44. Mol Cell.2004;13(4):483-96.
  8. Wang Y, Lauer ME, Anand S, et al. Hyaluronan synthase 2 protects skin fibroblasts against apoptosis induced by environmental stress. J Biol Chem.2014;289(46):32253-65.
  9. Jiang D, Liang J, Noble PW. Hyaluronan in tissue injury and repair. Annu Rev Cell Dev Biol.2007;23:435-61.
  10. Noble PW. Hyaluronan and its catabolic products in tissue injury and repair. Matrix Biol.2002;21(1):25-9.
  11. Hasova M, Crhak T, Safrankova B, et al. Hyaluronan minimizes effects of UV irradiation on human keratinocytes. Arch Dermatol Res.2011;303(4):277-84.
  12. Reed RK, Lilja K, Laurent TC. Hyaluronan in the rat with special reference to the skin. Acta Physiol Scand.1988;134(3):405-11.
  13. Nusgens BV. Hyaluronic acid and extracellular matrix: a primitive molecule? Ann Dermatol Venereol.2010;137 Suppl 1:S3-8.
  14. John HE, Price RD. Perspectives in the selection of hyaluronic acid fillers for facial wrinkles and aging skin. Patient Prefer Adherence.2009;3:225-30.
  15. Kage M, Tokudome Y, Matsunaga Y, et al. Effect of hyaluronan tetrasaccharides on epidermal differentiation in normal human epidermal keratinocytes. Int J Cosmet Sci.2014;36(1):109-15.
  16. Park D, Kim Y, Kim H, et al. Hyaluronic acid promotes angiogenesis by inducing RHAMM-TGFbeta receptor interaction via CD44-PKCdelta. Mol Cells.2012;33(6):563-74.
  17. Slevin M, Krupinski J, Gaffney J, et al. Hyaluronan-mediated angiogenesis in vascular disease: uncovering RHAMM and CD44 receptor signaling pathways. Matrix Biol.2007;26(1):58-68.
  18. Li JM, Chou HC, Wang SH, et al. Hyaluronic acid-dependent protection against UVB-damaged human corneal cells. Environ Mol Mutagen.2013;54(6):429-49.
  19. Wang F, Garza LA, Kang S, et al. In vivo stimulation of de novo collagen production caused by cross-linked hyaluronic acid dermal filler injections in photodamaged human skin. Arch Dermatol.2007;143(2):155-63.
  20. Quan T, Wang F, Shao Y, et al. Enhancing structural support of the dermal microenvironment activates fibroblasts, endothelial cells, and keratinocytes in aged human skin in vivo. J Invest Dermatol.2013;133(3):658-67.
  21. Rock K, Grandoch M, Majora M, et al. Collagen fragments inhibit hyaluronan synthesis in skin fibroblasts in response to ultraviolet B (UVB): new insights into mechanisms of matrix remodeling. J Biol Chem.2011;286(20):18268-76.
  22. Matuoka K, Hasegawa N, Namba M, et al. A decrease in hyaluronic acid synthesis by aging human fibroblasts leading to heparan sulfate enrichment and growth reduction. Aging (Milano).1989;1(1):47-54.
  23. Ghersetich I, Lotti T, Campanile G, et al. Hyaluronic acid in cutaneous intrinsic aging. Int J Dermatol.1994;33(2):119-22.
  24. Dai G, Freudenberger T, Zipper P, et al. Chronic ultraviolet B irradiation causes loss of hyaluronic acid from mouse dermis because of down-regulation of hyaluronic acid synthases. Am J Pathol.2007;171(5):1451-61.
  25. Litwiniuk M, Krejner A, Speyrer MS, et al. Hyaluronic Acid in Inflammation and Tissue Regeneration.2016;28(3):78-88.
  26. Fraser JR, Laurent TC, Laurent UB. Hyaluronan: its nature, distribution, functions and turnover. J Intern Med.1997;242(1):27-33.
  27. Essendoubi M, Gobinet C, Reynaud R, et al. Human skin penetration of hyaluronic acid of different molecular weights as probed by Raman spectroscopy. Skin Res Technol.2016;22(1):55-62.
  28. Pavicic T, Gauglitz GG, Lersch P, et al. Efficacy of cream-based novel formulations of hyaluronic acid of different molecular weights in anti-wrinkle treatment. J Drugs Dermatol.2011;10(9):990-1000.
  29. Nobile V, Buonocore D, Michelotti A, et al. Anti-aging and filling efficacy of six types hyaluronic acid based dermo-cosmetic treatment: double blind, randomized clinical trial of efficacy and safety. J Cosmet Dermatol.2014;13(4):277-87.


B) Vitamin-C References

1. Kivirikko KI, Myllyla R. Post-translational processing of procollagens. Ann NY Acad Sci. 1985;460:187-201.

2. Myllyla R, Majamaa K, Gunzler V, Hanauske-Abel HM, Kivirikko KI. Ascorbate is consumed stoichiometrically in the uncoupled reactions catalyzed by prolyl 4-hydroxylase and lysyl hydroxylase. J Biol Chem. 1984 May 10;259(9):5403-5.

3. Traikovich SS. Use of topical ascorbic acid and its effects on photodamaged skin topography. Arch Otolaryngol Head Neck Surg. 1999 Oct;125(10):1091-8.

4. Humbert PG, Haftek M, Creidi P, et al. Topical ascorbic acid on photoaged skin. Clinical, topographical and ultrastructural evaluation: double-blind study vs. placebo. Exp Dermatol. 2003 Jun;12(3):237-44.

5. Fitzpatrick RE, Rostan EF. Double-blind, half-face study comparing topical vitamin C and vehicle for rejuvenation of photodamage. Dermatol Surg. 2002 Mar;28(3):231-6.

6. Farris PK. Topical vitamin C: a useful agent for treating photoaging and other dermatologic conditions. Dermatol Surg. 2005 Jul;31(7 Pt 2):814-7.

7. Rhie G, Shin MH, Seo JY, et al. Aging- and photoaging-dependent changes of enzymic and nonenzymic antioxidants in the epidermis and dermis of human skin in vivo. J Invest Dermatol. 2001 Nov;117(5):1212-7.

8. Available at: http://anrvitamins.com/glossary/rosehips.html. Accessed October 22, 2008.

9. Available at: http://floraleads.com/seabuckthorn/. Accessed October 22, 2008.

10. Available at: http://www.allstarhealth.com/lj_c/Vitamin_C.htm. Accessed October 22, 2008.

11. Available at: http://911skin.com/cellex-c-topical-vitamin-c-does-.html. Accessed October 22, 2008.

12. Available at: http://www.biospecifics.com/collagendefined.html. Accessed October 22, 2008.

13. Miyachi Y, Ishikawa O. Dermal connective tissue metabolism in photoageing. Australas J Dermatol. 1998 Feb;39(1):19-23.

14. Gilchrest BA. Skin aging 2003: recent advances and current concepts. Cutis. 2003 Sep;72(3 Suppl):5-10.

15. Geesin JC, Gordon JS, Berg RA. Regulation of collagen synthesis in human dermal fibroblasts by the sodium and magnesium salts of ascorbyl-2-phosphate. Skin Pharmacol. 1993;6(1):65-71.

16. Hata R, Senoo H. L-ascorbic acid 2-phosphate stimulates collagen accumulation, cell proliferation, and formation of a three-dimensional tissuelike substance by skin fibroblasts. J Cell Physiol. 1989 Jan;138(1):8-16.

17. Kurata S, Hata R. Epidermal growth factor inhibits transcription of type I collagen genes and production of type I collagen in cultured human skin fibroblasts in the presence and absence of L-ascorbic acid 2-phosphate, a long-acting vitamin C derivative. J Biol Chem. 1991 May 25;266(15):9997-10003.

18. Tajima S, Pinnell SR. Ascorbic acid preferentially enhances type I and III collagen gene transcription in human skin fibroblasts. J Dermatol Sci. 1996 Mar;11(3):250-3.

19. Nusgens BV, Humbert P, Rougier A, et al. Topically applied vitamin C enhances the mRNA level of collagens I and III, their processing enzymes and tissue inhibitor of matrix metalloproteinase 1 in the human dermis. J Invest Dermatol. 2001 Jun;116(6):853-9.

20. Sauermann K, Jaspers S, Koop U, Wenck H. Topically applied vitamin C increases the density of dermal papillae in aged human skin. BMC Dermatol. 2004 Sep 29;4(1):13.

21. Shindo Y, Witt E, Han D, Epstein W, Packer L. Enzymic and non-enzymic antioxidants in epidermis and dermis of human skin. J Invest Dermatol. 1994 Jan;102(1):122-4.

22. May JM, Qu ZC, Mendiratta S. Protection and recycling of alpha-tocopherol in human erythrocytes by intracellular ascorbic acid. Arch Biochem Biophys. 1998 Jan 15;349(2):281-9.

23. Raschke T, Koop U, Dusing HJ, et al. Topical activity of ascorbic acid: from in vitro optimization to in vivo efficacy. Skin Pharmacol Physiol. 2004 Jul;17(4):200-6.

24. Available at: http://findarticles.com/p/articles/mi_hb4393/is_/ai_n29017943. Accessed December 4, 2008. 

25. Klock J, Ikeno H, Ohmori K, et al. Sodium ascorbyl phosphate shows in vitro and in vivo efficacy in the prevention and treatment of acne vulgaris. Int J Cosmet Sci. 2005 Jun;27(3):171-6.

26. Kameyama K, Sakai C, Kondoh S, et al. Inhibitory effect of magnesium L-ascorbyl-2-phosphate (VC-PMG) on melanogenesis in vitro and in vivo. J Am Acad Dermatol. 1996 Jan 34(1):29-33.

27. McKay DL, Blumberg JB. A review of the bioactivity of South African herbal teas: rooibos (Aspalathus linearis) and honeybush (Cyclopia intermedia). Phytother Res. 2007 Jan;21(1):1-16.

28. Ojo OO, Ladeji O, Nadro MS. Studies of the antioxidative effects of green and black tea (Camellia sinensis) extracts in rats. J Med Food. 2007 Jun;10(2):345-9.

29. Gawlik M, Czajka A. The effect of green, black and white tea on the level of alpha and gamma tocopherols in free radical-induced oxidative damage of human red blood cells. Acta Pol Pharm. 2007 Mar;64(2):159-64.

30. Katiyar SK. Skin photoprotection by green tea: antioxidant and immunomodulatory effects. Curr Drug Targets Immune Endocr Metabol Disord. 2003 Sep;3(3):234-42.

31. du Toit R, Volsteedt Y, Apostolides Z. Comparison of the antioxidant content of fruits, vegetables and teas measured as vitamin C equivalents. Toxicology. 2001 Sep 14;166(1-2):63-9.

32. Wha KS, Lee IW, Cho HJ, et al. Fibroblasts and ascorbate regulate epidermalization in reconstructed human epidermis. J Dermatol Sci. 2002 Dec;30(3):215-23.

C) Marine Phytoplankton References

1. Ruocco N., Costantini S., Guariniello S., Costantini M. Polysaccharides from the marine environment with pharmacological, cosmeceutical and nutraceutical potential. Molecules. 2016;21:551. doi: 10.3390/molecules21050551. 

2. Thomas N.V., Kim S.K. Beneficial effects of marine algal compounds in cosmeceuticals. Mar. Drugs. 2013;11:146–164. doi: 10.3390/md11010146. 

3. Molinski T.F., Dalisay D.S., Lievens S.L., Saludes J.P. Drug development from marine natural products. Nat. Rev. Drug Discov. 2009;8:69–85. doi: 10.1038/nrd2487. 

4. Munro M.H., Blunt J.W., Dumdei E.J., Hickford S.J., Lill R.E., Li S., Battershill C.N., Duckworth A.R. The discovery and development of marine compounds with pharmaceutical potential. J. Biotechnol. 1999;70:15–25. doi: 10.1016/S0168-1656(99)00052-8. 

5. Snelgrove P.V. An Ocean of Discovery: Biodiversity Beyond the Census of Marine Life. Planta Med. 2016;82:790–799. doi: 10.1055/s-0042-103934

6. Wang H.M.D., Chen C.C., Huynh P., Chang J.S. Exploring the potential of using algae in cosmetics. Bioresour. Technol. 2015;184:355–362. doi: 10.1016/j.biortech.2014.12.001.

7. Zia K.M., Tabasum S., Nasif M., Sultan N., Aslam N., Noreen A., Zuber M. A review on synthesis, properties and applications of natural polymer based carrageenan blends and composites. Int. J. Biol. Macromol. 2016;96:282–301. doi: 10.1016/j.ijbiomac.2016.11.095. 

8. De Jesus Raposo M.F., de Morais A.M., de Morais R.M. Marine polysaccharides from algae with potential biomedical applications. Mar. Drugs. 2015;13:2967–3028. doi: 10.3390/md13052967

9. Hamed I., Ozogul F., Ozogul Y., Regenstein J.M. Marine bioactive compounds and their health benefits: A Review. Compr. Rev. Food Sci. Food Saf. 2015;14:446–465. doi: 10.1111/1541-4337.12136. 

10. Kang H.K., Seo C.H., Park Y. The effects of marine carbohydrates and glycosylated compounds on human health. Int. J. Mol. Sci. 2015;16:6018–6056. doi: 10.3390/ijms16036018

11. Wei N., Quarterman J., Jin Y.S. Marine macroalgae: An untapped resource for producing fuels and chemicals. Trends Biotechnol. 2013;31:70–77. doi: 10.1016/j.tibtech.2012.10.009.

12. Laurienzo P. Marine polysaccharides in pharmaceutical applications: An Overview. Mar. Drugs. 2010;8:2435–2465. doi: 10.3390/md8092435. 

13. Cunha L., Grenha A. Sulfated seaweed polysaccharides as multifunctional materials in drug delivery applications. Mar. Drugs. 2016;14:42. doi: 10.3390/md14030042

14. Ahmed A.B., Adel M., Karimi P., Peidayesh M. Pharmaceutical, cosmeceutical, and traditional applications of marine carbohydrates. Adv. Food Nutr. Res. 2014;73:197–220. 

15. Melo M.R.S., Feitosa J.P.A., Freitas A.L.P., de Paula R.C.M. Isolation and characterization of soluble sulfated polysaccharide from the red seaweed Gracilaria cornea. Carbohydr. Polym. 2002;49:491–498. doi: 10.1016/S0144-8617(02)00006-1. 

16. Cha S.H., Ko S.C., Kim D., Jeon Y.J. Screening of marine algae for potential tyrosinase inhibitor: Those inhibitors reduced tyrosinase activity and melanin synthesis in zebrafish. J. Dermatol. 2011;38:343–352. doi: 10.1111/j.1346-8138.2010.00983.x. 

17. Heo S.J., Ko S.C., Kang S.M., Cha S.H., Lee S.H., Kang D.H., Jung W.K., Affan A., Oh C., Jeon Y.J. Inhibitory effect of diphlorethohydroxycarmalol on melanogenesis and its protective effect against UV-B radiation-induced cell damage. Food Chem. Toxicol. 2010;48:1355–1361. doi: 10.1016/j.fct.2010.03.001.

18. Quah C.C., Kim K.H., Lau M.S., Kim W.R., Cheah S.H., Gundamaraju R. Pigmentation and dermal conservative effects of the astonishing algae Sargassum polycystum and Padina tenuis on guinea pigs, human epidermal melanocytes (HEM) and Chang cells. Afr. J. Tradit. Complement. Altern. Med. 2014;11:77–83. doi: 10.4314/ajtcam.v11i4.13.

19. Murugan K., Iyer V.V. Differential growth inhibition of cancer cell lines and antioxidant activity of extracts of red, brown, and green marine algae. In Vitro Cell. Dev. Biol. Anim. 2013;49:324–334. doi: 10.1007/s11626-013-9603-7. 

20. Fujimura T., Tsukahara K., Moriwaki S., Kitahara T., Sano T., Takema Y. Treatment of human skin with an extract of Fucus vesiculosus changes its thickness and mechanical properties. J. Cosmet. Sci. 2002;53:1–9. 

21. Grether-Beck S., Muhlberg K., Brenden H., Felsner I., Brynjolfsdottir A., Einarsson S., Krutmann J. Bioactive molecules from the Blue Lagoon: In vitro and in vivo assessment of silica mud and microalgae extracts for their effects on skin barrier function and prevention of skin ageing. Exp. Dermatol. 2008;17:771–779. doi: 10.1111/j.1600-0625.2007.00693.x. 

22. Buono S., Langellotti A.L., Martello A., Bimonte M., Tito A., Carola A., Apone F., Colucci G., Fogliano V. Biological activities of dermatological interest by the water extract of the microalga Botryococcus braunii. Arch. Dermatol. Res. 2012;304:755–764. doi: 10.1007/s00403-012-1250-4.

23. Kang H., Lee C.H., Kim J.R., Kwon J.Y., Seo S.G., Han J.G., Kim B.G., Kim J.E., Lee K.W. Chlorella vulgaris attenuates dermatophagoides Farinae-induced atopic dermatitis-like symptoms in NC/Nga mice. Int. J. Mol. Sci. 2015;16:21021–21034. doi: 10.3390/ijms160921021.

24. Hidalgo-Lucas S., Bisson J.F., Duffaud A., Nejdi A., Guerin-Deremaux L., Baert B., Saniez-Degrave M.H., Rozan P. Benefits of oral and topical administration of ROQUETTE Chlorella sp. on skin inflammation and wound healing in mice. Anti-Inflamm. Anti-Allergy Agents Med. Chem. 2014;13:93–102. doi: 10.2174/1871523013666140626154458. 

25. Singh A., Singh S.P., Bamezai R. Inhibitory potential of Chlorella vulgaris (E-25) on mouse skin papillomagenesis and xenobiotic detoxication system. Anticancer Res. 1999;19:1887–1891.

26. Hidalgo-Lucas S., Rozan P., Guerin-Deremaux L., Violle N., Baert B., Saniez-Degrave M.H., Bisson J.F. Oral and topical administration of ROQUETTE Schizochytrium sp. alleviate skin inflammation and improve wound healing in mice. Anti-Inflamm. Anti-Allergy Agents Med. Chem. 2015;13:154–164. doi: 10.2174/1871523013666141031124517. 

27. Kim S., You D.H., Han T., Choi E.M. Modulation of viability and apoptosis of UVB-exposed human keratinocyte HaCaT cells by aqueous methanol extract of laver (Porphyra yezoensis) J. Photochem. Photobiol. B. 2014;141:301–307. doi: 10.1016/j.jphotobiol.2014.10.012.

28. Mercurio D.G., Wagemaker T.A.L., Alves V.M., Benevenuto C.G., Gaspar L.R., Campos P.M. In vivo photoprotective effects of cosmetic formulations containing UV filters, vitamins, Ginkgo biloba and red algae extracts. J. Photochem. Photobiol. B. 2015;153:121–126. doi: 10.1016/j.jphotobiol.2015.09.016. 

29. Al-Bader T., Byrne A., Gillbro J., Mitarotonda A., Metois A., Vial F., Rawlings A.V., Laloeuf A. Effect of cosmetic ingredients as anticellulite agents: Synergistic action of actives with in vitroand in vivo efficacy. J. Cosmet. Dermatol. 2012;11:17–26. doi: 10.1111/j.1473-2165.2011.00594.x.

30. Xhauflaire-Uhoda E., Fontaine K., Pierard G.E. Kinetics of moisturizing and firming effects of cosmetic formulations. Int. J. Cosmet. Sci. 2008;30:131–138. doi: 10.1111/j.1468-2494.2008.00436.x.

31. Rinnerthaler M., Bischof J., Streubel M.K., Trost A., Richter K. Oxidative stress in aging human skin. Biomolecules. 2015;5:545–589. doi: 10.3390/biom5020545. 

32. Rinnerthaler M., Streubel M.K., Bischof J., Richter K. Skin aging, gene expression and calcium. Exp. Gerontol. 2015;68:59–65. doi: 10.1016/j.exger.2014.09.015. 

33. Takahashi M., Tezuka T. The content of free amino acids in the stratum corneum is increased in senile xerosis. Arch. Dermatol. Res. 2004;295:448–452. doi: 10.1007/s00403-003-0448-x34. Li J., Tang H., Hu X., Chen M., Xie H. Aquaporin-3 gene and protein expression in sun-protected human skin decreases with skin ageing. Australas. J. Dermatol. 2010;51:106–112. doi: 10.1111/j.1440-0960.2010.00629.x. 

35. Ngo D.H., Kim S.K. Sulfated polysaccharides as bioactive agents from marine algae. Int. J. Biol. Macromol. 2013;62:70–75. doi: 10.1016/j.ijbiomac.2013.08.036.

36. Song Y.S., Balcos M.C., Yun H.Y., Baek K.J., Kwon N.S., Kim M.K., Kim D.S. ERK activation by fucoidan leads to inhibition of melanogenesis in Mel-Ab Cells. Korean J. Physiol. Pharmacol. 2015;19:29–34. doi: 10.4196/kjpp.2015.19.1.29. 

37. Ruperez P., Ahrazem O., Leal J.A. Potential antioxidant capacity of sulfated polysaccharides from the edible marine brown seaweed Fucus vesiculosus. J. Agric. Food Chem. 2002;50:840–845. doi: 10.1021/jf010908o. 

38. Wang J., Zhang Q., Zhang Z., Li Z. Antioxidant activity of sulfated polysaccharide fractions extracted from Laminaria japonica. Int. J. Biol. Macromol. 2008;42:127–132. doi: 10.1016/j.ijbiomac.2007.10.003. 

39. Wang J., Wang F., Zhang Q.B., Zhang Z.S., Shi X.L., Li P.C. Synthesized different derivatives of low molecular fucoidan extracted from Laminaria japonica and their potential antioxidant activity in vitro. Int. J. Biol. Macromol. 2009;44:379–384. doi: 10.1016/j.ijbiomac.2009.02.001.

40. Marudhupandi T., Kumar T.T., Senthil S.L., Devi K.N. In vitro antioxidant properties of fucoidan fractions from Sargassum tenerrimum. Pak. J. Biol. Sci. 2014;17:402–407. doi: 10.3923/pjbs.2014.402.407. 

41. Moon H.J., Lee S.R., Shim S.N., Jeong S.H., Stonik V.A., Rasskazov V.A., Zvyagintseva T., Lee Y.H. Fucoidan inhibits UVB-induced MMP-1 expression in human skin fibroblasts. Biol. Pharm. Bull. 2008;31:284–289. doi: 10.1248/bpb.31.284. 

42. Moon H.J., Lee S.H., Ku M.J., Yu B.C., Jeon M.J., Jeong S.H., Stonik V.A., Zvyagintseva T.N., Ermakova S.P., Lee Y.H. Fucoidan inhibits UVB-induced MMP-1 promoter expression and down regulation of type I procollagen synthesis in human skin fibroblasts. Eur. J. Dermatol. 2009;19:129–134. 

43. Moon H.J., Park K.S., Ku M.J., Lee M.S., Jeong S.H., Imbs T.I., Zvyagintseva T.N., Ermakova S.P., Lee Y.H. Effect of Costaria costata fucoidan on expression of matrix metalloproteinase-1 promoter, mRNA, and protein. J. Nat. Prod. 2009;72:1731–1734. doi: 10.1021/np800797v.

44. Maruyama H., Tamauchi H., Kawakami F., Yoshinaga K., Nakano T. Suppressive effect of dietary fucoidan on proinflammatory immune response and MMP-1 expression in UVB-irradiated mouse skin. Planta Med. 2015;81:1370–1374. 

45. Senni K., Gueniche F., Foucault-Bertaud A., Igondjo-Tchen S., Fioretti F., Colliec-Jouault S., Durand P., Guezennec J., Godeau G., Letourneur D. Fucoidan a sulfated polysaccharide from brown algae is a potent modulator of connective tissue proteolysis. Arch. Biochem. Biophys. 2006;445:56–64. doi: 10.1016/j.abb.2005.11.001.

46. Yang J.H. Topical application of fucoidan improves atopic dermatitis symptoms in NC/Nga mice. Phytother. Res. 2012;26:1898–1903. doi: 10.1002/ptr.4658.

47. Iwamoto K., Hiragun T., Takahagi S., Yanase Y., Morioke S., Mihara S., Kameyoshi Y., Hide M. Fucoidan suppresses IgE production in peripheral blood mononuclear cells from patients with atopic dermatitis. Arch. Dermatol. Res. 2011;303:425–431. doi: 10.1007/s00403-010-1115-7.

48. Wang J., Jin W., Hou Y., Niu X., Zhang H., Zhang Q. Chemical composition and moisture-absorption/retention ability of polysaccharides extracted from five algae. Int. J. Biol. Macromol. 2013;57:26–29. doi: 10.1016/j.ijbiomac.2013.03.001. 

49. Lee N.Y., Ermakova S.P., Choi H.K., Kusaykin M.I., Shevchenko N.M., Zvyagintseva T.N., Choi H.S. Fucoidan from Laminaria cichorioides inhibits AP-1 transactivation and cell transformation in the mouse epidermal JB6 cells. Mol. Carcinog. 2008;47:629–637. doi: 10.1002/mc.20428. 

50. Li J., Xie L., Qin Y., Liang W.H., Mo M.Q., Liu S.L., Liang F., Wang Y., Tan W., Liang Y. Effect of laminarin polysaccharide on activity of matrix metalloproteinase in photoaging skin. China J. Chin. Mater. Med. 2013;38:2370–2373. 

51. Ayoub A., Pereira J.M., Rioux L.E., Turgeon S.L., Beaulieu M., Moulin V.J. Role of seaweed laminaran from Saccharina longicruris on matrix deposition during dermal tissue-engineered production. Int. J. Biol. Macromol. 2015;75:13–20. doi: 10.1016/j.ijbiomac.2015.01.017.

52. Qi H., Zhang Q., Zhao T., Chen R., Zhang H., Niu X., Li Z. Antioxidant activity of different sulfate content derivatives of polysaccharide extracted from Ulva pertusa (Chlorophyta) in vitro. Int. J. Biol. Macromol. 2005;37:195–199. doi: 10.1016/j.ijbiomac.2005.10.008. 

53. Qi H., Zhang Q., Zhao T., Hu R., Zhang K., Li Z. In vitro antioxidant activity of acetylated and benzoylated derivatives of polysaccharide extracted from Ulva pertusa (Chlorophyta) Bioorg. Med. Chem. Lett. 2006;16:2441–2445. doi: 10.1016/j.bmcl.2006.01.076. 

54. Adrien A., Bonnet A., Dufour D., Baudouin S., Maugard T., Bridiau N. Pilot production of ulvans from Ulva sp. and their effects on hyaluronan and collagen production in cultured dermal fibroblasts. Carbohydr. Polym. 2017;157:1306–1314. doi: 10.1016/j.carbpol.2016.11.014.

55. Kuda T., Tsunekawa M., Goto H., Araki Y. Antioxidant properties of four edible algae harvested in the Noto Peninsula, Japan. J. Food Compos. Anal. 2005;18:625–633. doi: 10.1016/j.jfca.2004.06.015.

56. Zhang Q., Li N., Zhou G., Lu X., Xu Z., Li Z. In vivo antioxidant activity of polysaccharide fraction from Porphyra haitanesis (Rhodephyta) in aging mice. Pharmacol. Res. 2003;48:151–155. doi: 10.1016/S1043-6618(03)00103-8. 

57. Zhang Q., Li N., Liu X., Zhao Z., Li Z., Xu Z. The structure of a sulfated galactan from Porphyra haitanensis and its in vivo antioxidant activity. Carbohydr. Res. 2004;339:105–111. doi: 10.1016/j.carres.2003.09.015. 

58. Zhao T., Zhang Q., Qi H., Zhang H., Niu X., Xu Z., Li Z. Degradation of porphyran from Porphyra haitanensis and the antioxidant activities of the degraded porphyrans with different molecular weight. Int. J. Biol. Macromol. 2006;38:45–50. doi: 10.1016/j.ijbiomac.2005.12.018.

59. Zhang Z.S., Zhang Q.B., Wang J., Zhang H., Niu X.Z., Li P.C. Preparation of the different derivatives of the low-molecular-weight porphyran from Porphyra haitanensis and their antioxidant activities in vitro. Int. J. Biol. Macromol. 2009;45:22–26. doi: 10.1016/j.ijbiomac.2009.03.009. 

60. Jiang Z., Hama Y., Yamaguchi K., Oda T. Inhibitory effect of sulphated polysaccharide porphyran on nitric oxide production in lipopolysaccharide-stimulated RAW264.7 macrophages. J. Biochem. 2012;151:65–74. doi: 10.1093/jb/mvr115. 

61. Isaka S., Cho K., Nakazono S., Abu R., Ueno M., Kim D., Oda T. Antioxidant and anti-inflammatory activities of porphyran isolated from discolored nori (Porphyra yezoensis) Int. J. Biol. Macromol. 2015;74:68–75. doi: 10.1016/j.ijbiomac.2014.11.043. 

62. Takematsu H., Seiji M. Effect of macrophages on elimination of dermal melanin from the dermis. Arch. Dermatol. Res. 1984;276:96–98. doi: 10.1007/BF00511063. 

63. Thevanayagam H., Mohamed S.M., Chu W.L. Assessment of UVB-photoprotective and antioxidative activities of carrageenan in keratinocytes. J. Appl. Phycol. 2014;26:1813–1821. doi: 10.1007/s10811-013-0207-0. 

64. Sun Y.J., Yang B.Y., Wu Y.M., Liu Y., Gu X., Zhang H., Wang C.J., Cao H.Z., Huang L.J., Wang Z.F. Structural characterization and antioxidant activities of kappa-carrageenan oligosaccharides degraded by different methods. Food Chem. 2015;178:311–318. doi: 10.1016/j.foodchem.2015.01.105. 

65. Yuan H.M., Song J.M., Zhang W.W., Li X.G., Li N., Gao X.L. Antioxidant activity and cytoprotective effect of kappa-carrageenan oligosaccharides and their different derivatives. Bioorg. Med. Chem. Lett. 2006;16:1329–1334. doi: 10.1016/j.bmcl.2005.11.057. 

66. Yuan H.M., Zhang W.W., Li X.G., Lu X.X., Li N., Gao X.L., Song J.M. Preparation and in vitro antioxidant activity of kappa-carrageenan oligosaccharides and their oversulfated, acetylated, and phosphorylated derivatives. Carbohydr. Res. 2005;340:685–692. doi: 10.1016/j.carres.2004.12.026. 

67. Ren S.W., Li J., Wang W., Guan H.S. Protective effects of kappa-ca3000+CP against ultraviolet-induced damage in HaCaT and MEF cells. J. Photochem. Photobiol. B. 2010;101:22–30. doi: 10.1016/j.jphotobiol.2010.06.007. 

68. Ferreres F., Lopes G., Gil-Izquierdo A., Andrade P.B., Sousa C., Mouga T., Valentao P. Phlorotannin Extracts from Fucales Characterized by HPLC-DAD-ESI-MSn: Approaches to Hyaluronidase Inhibitory Capacity and Antioxidant Properties. Mar. Drugs. 2012;10:2766–2781. doi: 10.3390/md10122766. 

69. Cui L.B., Zhou X.Y., Zhao Z.J., Li Q., Huang X.Y., Sun F.Z. The Kunming mouse: As a model for age-related decline in female fertility in human. Zygote. 2013;21:367–376. doi: 10.1017/S0967199412000123. 

70. Lahaye M., Robic A. Structure and functional properties of ulvan, a polysaccharide from green seaweeds. Biomacromolecules. 2007;8:1765–1774. doi: 10.1021/bm061185q. 

71. Yun E.J., Choi I.G., Kim K.H. Red macroalgae as a sustainable resource for bio-based products. Trends Biotechnol. 2015;33:247–249. doi: 10.1016/j.tibtech.2015.02.006. 

72. Chen H., Yan X., Zhu P., Lin J. Antioxidant activity and hepatoprotective potential of agaro-oligosaccharides in vitro and in vivo. Nutr. J. 2006;5:31. doi: 10.1186/1475-2891-5-31.

73. Nakayasu M., Saeki H., Tohda H., Oikawa A. Effects of sugars on melanogenesis in cultured melanoma cells. J. Cell. Physiol. 1977;92:49–55. doi: 10.1002/jcp.1040920107. 

74. Kim J.H., Yun E.J., Yu S., Kim K.H., Kang N.J. Different Levels of Skin Whitening Activity among 3,6-Anhydro-l-galactose, Agarooligosaccharides, and Neoagarooligosaccharides. Mar. Drugs. 2017;15:321. doi: 10.3390/md15100321. 

75. Yun E.J., Lee S., Kim J.H., Kim B.B., Kim H.T., Lee S.H., Pelton J.G., Kang N.J., Choi I.G., Kim K.H. Enzymatic production of 3,6-anhydro-L-galactose from agarose and its purification and in vitro skin whitening and anti-inflammatory activities. Appl. Microbiol. Biotechnol. 2013;97:2961–2970. doi: 10.1007/s00253-012-4184-z. 

76. Chen H.M., Yan X.J. Antioxidant activities of agaro-oligosaccharides with different degrees of polymerization in cell-based system. Biochim. Biophys. Acta. 2005;1722:103–111. doi: 10.1016/j.bbagen.2004.11.016. 

77. Enoki T., Okuda S., Kudo Y., Takashima F., Sagawa H., Kato I. Oligosaccharides from agar inhibit pro-inflammatory mediator release by inducing heme oxygenase 1. Biosci. Biotechnol. Biochem. 2010;74:766–770. doi: 10.1271/bbb.90803. 

78. Enoki T., Tominaga T., Takashima F., Ohnogi H., Sagawa H., Kato I. Anti-tumor-promoting activities of agaro-oligosaccharides on two-stage mouse skin carcinogenesis. Biol. Pharm. Bull. 2012;35:1145–1149. doi: 10.1248/bpb.b12-00188. 

79. Bin B.H., Kim S.T., Bhin J., Lee T.R., Cho E.G. The development of sugar-based anti-melanogenic agents. Int. J. Mol. Sci. 2016;17:583. doi: 10.3390/ijms17040583. 

80. Kobayashi R., Takisada M., Suzuki T., Kirimura K., Usami S. Neoagarobiose as a novel moisturizer with whitening effect. Biosci. Biotechnol. Biochem. 1997;61:162–163. doi: 10.1271/bbb.61.162. 

81. Jang M.K., Lee D.G., Kim N.Y., Yu K.H., Jang H.J., Lee S.W., Jang H.J., Lee Y.J., Lee S.H. Purification and characterization of neoagarotetraose from hydrolyzed agar. J. Microbiol. Biotechnol. 2009;19:1197–1200. 

82. Lee D.G., Jang M.K., Lee O.H., Kim N.Y., Ju S.A., Lee S.H. Over-production of a glycoside hydrolase family 50 beta-agarase from Agarivorans sp. JA-1 in Bacillus subtilis and the whitening effect of its product. Biotechnol. Lett. 2008;30:911–918. doi: 10.1007/s10529-008-9634-4.

83. Ariga O., Okamoto N., Harimoto N., Nakasaki K. Purification and characterization of alpha-neoagarooligosaccharide hydrolase from Cellvibrio sp OA-2007. J. Microbiol. Biotechnol. 2014;24:48–51. doi: 10.4014/jmb.1307.07018.

84. Kim J.H., Kim D.H., Cho K.M., Kim K.H., Kang N.J. Effect of 3,6-anhydro-l-galactose on alpha-melanocyte stimulating hormone-induced melanogenesis in human melanocytes and a skin-equivalent model. J. Cell. Biochem. 2018;119:7643–7656. doi: 10.1002/jcb.27112.

85. Ajisaka K., Agawa S., Nagumo S., Kurato K., Yokoyama T., Arai K., Miyazaki T. Evaluation and comparison of the antioxidative potency of various carbohydrates using different methods. J. Agric. Food Chem. 2009;57:3102–3107. doi: 10.1021/jf804020u. 

86. Villaverde J.J., Sevilla-Moran B., Lopez-Goti C., Alonso-Prados J.L., Sandin-Espana P. Computational Methodologies for the Risk Assessment of Pesticides in the European Union. J. Agric. Food Chem. 2017;65:2017–2018. doi: 10.1021/acs.jafc.7b00516. 

87. Domingo L.R., Rios-Gutierrez M., Perez P. Applications of the Conceptual Density Functional Theory Indices to Organic Chemistry Reactivity. Molecules. 2016;21:748. doi: 10.3390/molecules21060748.

88. Alice B.N., Richard J.F. Strategies for the discovery and identification of food protein-derived biologically active peptides. Trends Food Sci. Technol. 2017;69:289–305.